Usuario:Dremark11/Taller

De Wikipedia, la enciclopedia libre

Superficie (Matemática)[editar]

Esfera de radio r.

En matemáticas, una superficie es un modelo matemático del concepto común de superficie. Es una generalización de un plano, pero, a diferencia de un plano, puede ser curvo; esto es análogo a una curva que generaliza una línea recta.

Existen varias definiciones más precisas, según el contexto y las herramientas matemáticas que se utilicen para su estudio, las superficies matemáticas más simples son planos y esferas en el espacio tridimensional euclidiano. La definición exacta de una superficie puede depender del contexto. Por lo general, en geometría algebraica, una superficie puede cruzarse a sí misma mientras que, en geometría diferencial y Topología puede que no.

Definiciones[editar]

A menudo, una superficie se define mediante ecuaciones que se satisfacen con las coordenadas de sus puntos. Este es el caso de la gráfica de una función continua de dos variables. El conjunto de los ceros de una función de tres variables es una superficie, que se denomina superficie implícita[1]​ .Si la función de definición de tres variables es un polinomio , la superficie es una superficie algebraica. Por ejemplo, la esfera unitaria es una superficie algebraica, ya que puede definirse mediante la ecuación implícita.

Una superficie también puede definirse como la imagen , en algún espacio de dimensión al menos 3, de una función continua de dos variables (se requieren algunas condiciones adicionales para asegurar que la imagen no sea una curva). En este caso, se dice que se tiene una superficie paramétrica , que está parametrizada por estas dos variables, llamadas parámetros . Por ejemplo, la esfera unitaria puede ser parametrizada por los ángulos de Euler.

Terminología[editar]

En este articulo, varios tipos de superficies se consideran y se comparan. Por lo tanto, es necesaria una terminología sin ambigüedades para distinguirlas. Por ende, llamamos superficies topológicas a las superficies que son "mainfolds" de 2 dimensiones (las superficies consideradas en superficie (topológica)). Llamamos superficies diferenciables a las superficies que son "mainfolds diferenciales" (las superficies consideradas en superficie (geometría diferencial)). Toda superficie diferenciable es una superficie topológica, pero lo contrario es falso.

Por simplicidad, A menos que se indique lo contrario, “superficie” significa una superficie en el espacio Euclidiano de 3 dimensiones o en R3. Una superficie que se supone que no debe incluirse en otro espacio es llamada una superficie abstracta.

Ejemplos[editar]

  • El gráfico de una función continua de 2 variables, definida sobre un subconjunto abierto conectado en R2 es una superficie topología. si la función es diferenciable, el gráfico es una superficie diferenciable.
  • Un plano es tanto una superficie algebraica y una superficie diferenciable. También es una superficie reglada y una superficie de Revolución.
  • Un cilindro circular(que es, el lugar geométrico de una línea que cruza un círculo y es paralela a una dirección dada) es una superficie algebraica y una superficie diferenciable.
  • Un cono circular(lugar geométrico de una línea cruzando un círculo, y pasando por un punto fijo, el ápex, quién está fuera del plano del círculo) es una superficie algebraica que no es una superficie diferenciales. si se elimina el ápex, el resto del cono la unión de los superficies diferenciales.
  • La superficie de un poliedro es una superficie topológica, que tampoco es una superficie diferenciable ni tampoco una superficie algebraica.
  • Un paraboloide hiperbólico (el gráfico de una función z = xy) es una superficie diferenciable y una superficie algebraica. es también una superficie de la regla, y por esta razón, examen usa en arquitectura.
  • Un hiperboloide de dos hojas es una superficie algebraica y la unión de 2 superficies diferenciales no interceptadas.

Superficie paramétrica[editar]

Articulo principal: superficie paramétrica

Una superficie paramétrica es la imagen de un subconjunto abierto en el plano euclidiano (normalmente R2 ) por una función continua, en un espacio topológico, generalmente un espacio euclidiano de al menos 3 dimensiones. usualmente se supone que la función es una funcion continua diferenciable, y esto será siempre el caso en este artículo.

Específicamente, una superficie paramétrica en R3 está dada por 3 Funciones de 2 variables u y v, llamadas parámetros.

.

Como la imagen de tal función puede ser una curva (por ejemplo, si las 3 Funciones son constantes con respecto a v), se requiere una condición adicional, generalmente que, para casi todos los valores de los parámetros, la matriz jacobiana

tiene rango dos. Aquí” casi todos” significa que los valores de los parámetros donde el rango es 2 contienen un subconjunto abierto denso del rango de la parametrización. para superficies en un espacio de dimensiones más altas, la condición es la misma, excepto por el número de columnas de la matriz jacobiana.

Plano tangente y vector normal[editar]

Esfera con recta tangente

Un punto p donde la matriz jacobiana anterior tiene rango dos se llama regular, o, más apropiadamente, la parametrización es llamada regular en p.

El plano tangente en un punto Regular p es el único plano que pasa a través de p y tiene una dirección paralela a los dos vectores fila de la matriz jacobiana. el plano tangente es un concepto afín, porque esta definición es independiente de la elección de una métrica. en otras palabras, cualquier transformación afín asigna el plano tangente a la superficie en un punto al plano tangente a la imagen de la superficie en la imagen del punto.

La línea normal de un punto de una superficie es la única línea Que pasa a través del punto y perpendicular al plano tangente; el vector normal es un vector paralelo al normal.

Para otras invariantes diferenciales de superficies, en la cercanía de un punto, ver la geometría diferencial de superficies.[1]

Punto Regular y punto singular[editar]

Un punto de una superficie paramétrica que no es regular es irregular. Esto son varios tipos de puntos irregulares.

Puede ocurrir que un punto regular se haga regular, sí se cambia la parametrización. Este es el caso de los polos en la parametrización de la esfera unitaria por los ángulos Euler: basta con intercambiar el papel de los diferentes ejes de coordenadas para cambiar los polos.

Por otro lado, considere el cono circular de la ecuación paramétrica

.

El vértice del cono es el origen (0,0,0), y se obtiene por t=0. Es un punto irregular que sigue siendo irregular, cualquiera que sea la parametrización escogida (de lo contrario, existiría un único plano tangente). Tal punto irregular, donde el plano tangente es indefinido, es expresado como singular.[2]

Hay otro tipo de puntos singulares. Existen los puntos Auto-cruce, es decir, Qué son los puntos donde la superficie se cruza a sí misma. En otras palabras, estos son los puntos que son obtenidos para (al menos) dos diferentes valores de los parámetros. [2]

Gráfico de una función bivariado[editar]

Sea Una función de dos variables reales. Esta es la superficie paramétrica, parametrizada como

.

Cada punto en esta superficie regular, ya que las dos primeras columnas de la matriz jacobiana forman la matriz identidad de rango dos.[3]

Superficie racional[editar]

Articulo principal: superficie racional

Una superficie racional es una superficie que puede ser parametrizada por Funciones racionales de dos variables. esta es, sí son, por i= 0,1,2,3, polinomios en dos indeterminados, entonces la superficie paramétrica, es definida por

,

es una superficie racional.

Una superficie racional es una superficie algebraica, pero la mayoría de las superficies algebraicas no son racionales.[4]

Superficie implícita[editar]

Articulo principal: superficie implícita

Una superficie implícita en un espacio euclidiano (o, más generalmente, en un espacio afín ) de 3 dimensiones es el conjunto de los ceros comunes de una función diferenciable de tres variables

Implícito significa que la ecuación define implícitamente una de las variables como una función de las otras variables. Esto se hace más exacto por el teorema de la función implícita: si y la derivada parcial en z de f no es cero en , entonces existe una funcion diferenciable tal que

en el entorno de . En otras palabras, la superficie implícita es la grafica de una funcion cerca a un punto de la superficie donde la derivada parcial in z es distinta de cero. Una superficie implícita tiene asi, localmente, una representación paramétrica, excepto en los puntos de la superficie donde las tres derivadas parciales son cero.[3]

Puntos regulares y plano tangente[editar]

Un punto de la superficie donde al menos una derivada parcial de f es diferente de cero es llamada regular. En tal punto , el plano tangente y la dirección de la normal están bien definidos, y pueden deducirse, con el teorema de la función implícita de la definición anterior, en § plano tangente y vector normal. la dirección de la normal es el gradiente, que es el vector

El plano tangente es definido por esta ecuación implícita

.

Punto singular[editar]

Un punto singular de una superficie implícita (en ) es un punto de la superficie donde se cumple la ecuación implícita y las tres derivadas parciales de su función definitoria son todas cero. Por tanto, los puntos singulares son las soluciones de un sistema de cuatro ecuaciones en tres indeterminadas. Como la mayoría de estos sistemas no tienen solución, muchas superficies no tienen ningún punto singular. Una superficie sin punto singular se llama regular o no singular .

El estudio de las superficies cerca de sus puntos singulares y la clasificación de los puntos singulares es la teoría de la singularidad. Un punto singular está aislado si no hay otro punto singular en la cercanía de él. De lo contrario, los puntos singulares pueden formar una curva. Este es en particular el caso de las superficies auto cruzadas.

Superficie Algebraica[editar]

Originalmente, una superficie algebraica era una superficie que podía definirse usando una ecuación implícita

Donde f es un polinomio de tres variables con coeficientes reales

El concepto ha sido extendido en varias direcciones, definiendo superficie sobre campos arbitrarios, y considerando las superficies en el espacio de dimensiones arbitrarias o en espacios proyectivos. Superficies algebraicas abstractas, las cuales no están incluidas explícitamente en otro espacio también se consideran.[5]

Superficies sobre campos arbitrarios[editar]

Cualquier polinomio con coeficientes en cualquier campo es aceptado por definir una superficie algebraica. Sin embargo, el campo de coeficientes de un polinomio no está bien definido, como por ejemplo, un polinomio con coeficientes racionales puede ser considerado un polinomio con coeficientes complejos o reales. Por lo tanto, el concepto de punto de una superficie ha sido generalizado de la siguiente manera:

Considerando un polinomio f(x, y, z) dejaremos a k en el campo más pequeño conteniendo los coeficientes, y K puede ser una extensión algebraica cerrada de k, de grado infinito de trascendencia. Entonces un punto de la superficie es un elemento de K3 que es una solución de la ecuación.

Si el polinomio tiene coeficientes reales, el campo K es el campo complejo, y un punto de la superficie que pertenece a (un punto usual) es llamado un punto real. Un punto que pertenezca a es llamado racional sobre k, o simplemente un punto racional si k es el campo de números racionales.[4]

superficie proyectiva[editar]

Una superficie proyectiva en un espacio proyectivo de tres dimensiones es el conjunto de puntos cuyas coordenadas homogéneas son ceros de un solo polinomio homogéneo en cuatro variables. Mas generalmente, una superficie proyectiva es un subconjunto de un espacio proyectivo, que es una variedad proyectiva de dos dimensiones.

Las superficies proyectivas están fuertemente relacionadas con las superficies afines (es decir, superficies algebraicas ordinarias). Se pasa de una superficie proyectiva a la superficie afín correspondiente asignando a uno alguna coordenada o indeterminada de los polinomios definidores (normalmente el último). Por el contrario, se pasa de una superficie afín a su superficie proyectiva asociada (llamada terminación proyectiva) al homogeneizar el polinomio definitorio (en el caso de superficies en un espacio de dimensión tres), o al homogeneizar todos los polinomios del ideal definitorio (para superficies en un espacio de dimensión superior).

En espacios de dimensiones superiores[editar]

No se puede definir el concepto de una superficie algebraica en un espacio de dimensiónes superiores a tres sin una definición general de una variedad algebraica y de la dimensión de una variedad algebraica . De hecho, una superficie algebraica es una variedad algebraica de dimensión dos.

Más precisamente, una superficie algebraica en un espacio de dimensión n es el conjunto de los ceros comunes de al menos n – 2 polinomios, pero estos polinomios deben satisfacer otras condiciones que pueden no ser inmediatas de verificar. En primer lugar, los polinomios no deben definir una variedad o un conjunto algebraico de mayor dimensión, que suele ser el caso si uno de los polinomios está en el ideal generado por los demás. Generalmente, n – 2 polinomios definen un conjunto algebraico de dimensión dos o superior. Si la dimensión es dos, el conjunto algebraico puede tener varias componentes irreducibles. Si solo hay un componente el n – 2 los polinomios definen una superficie, que es una intersección completa . Si hay varios componentes, entonces se necesitan más polinomios para seleccionar un componente específico.

La mayoría de los autores consideran como superficie algebraica sólo las variedades algebraicas de dimensión dos, pero algunos también consideran como superficies todos los conjuntos algebraicos cuyas componentes irreducibles tienen la dimensión dos.

En el caso de superficies en un espacio de dimensión tres, toda superficie es una intersección completa, y una superficie está definida por un solo polinomio, que es irreducible o no, según se consideren como superficies conjuntos algebraicos no irreducibles de dimensión dos o no.[5]

Superficie Topológica[editar]

Diferentes superficies Topológicas

Cuando hablamos de superficie en topología es la generalización definida en base a una variedad de dos dimensiones. Dichas dimensiones son las que aborda la topología y de manera enfatizada los espacios topológicos, en otras palabras, una superficie topológica es un espacio topológico. Se puede ver de una manera en la que dados ciertos puntos en un conjunto se dice que son un homeomorfismo a un subconjunto abierto en un plano euclidiano. Toda la superficie topológica es homeomorfo a la superficie de un poliedro puesto que todas las fases que se presentan son triángulos. El estudio combinatorio de manera general busca la geometría de un simplex en varias dimensiones; (un simplex es una indicación de un de un triángulo o tetraedro a dimensiones arbitrarias). Este estudio permite la caracterización de ciertas propiedades que tienen las superficies ya sea en términos infinitivos de manera algebraica.[6]

Véase también[editar]

Referencias[editar]

  1. Recta normal y plano tangente
  2. Ecuaciones diferenciales I
  3. RPubs
  4. Superficie racional
  5. Superficie Topología
  1. Aquí, "Implícita" no se refiere a una propiedad de la superficie. Que puede definirse por otros medios, sino a cómo se define. Por lo tanto, este término es una abreviatura de "superficie definida por una ecuación implícita".
  2. «Punto rectangular y singular». 
  3. «Superficie implicita». 
  4. «Geometria algebraica». 
  5. «Espacios dimensionales».